2020-22

Full Marks: 70

Time: 3 hours

Answer any five questions in which Q.No.1 is compulsory.

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

- 1. Answer any four of the following questions: 3.5 × 4
- (a) Give an account of the electronic specific heat of solids.
- (b) What are low-temperature and high temperature superconductors?
- (c) Explain ferrimagnetism is a special case of antiferromagnetism.

- (d) Distinguish between anti-ferroelectricity and piezoelectricity.
- Briefly state the importance of the Schottky diode.
 - (f) Discuss in brief T-type flip-flop.
- 2. Give the tight-binding approximation of an electron in a crystal. Show how it leads to the formation of energy bands in a solid.

 8+6
- 3. Obtain an expression for the Lorentz electric field at an atomic site of a dielectric medium and also deduce Clausius-Mossotti relation.
- 4. Discuss the thermodynamics of superconducting transitions. How does it explain the discontinuity in the variation of specific heat as a function of temperature? 9+5
- 5. Discuss dc and ac Josephson's effects and explain their importance. 6+6+2

VPG(3)-Phy(10)

(Continued)

- What is the race around condition in the J-K flip-flop? Describe construction and working of J-K Master-slave flip flop. 4+5+5
 - 7. Give the construction and working of a ripple counter. 7+7
- 8. Describe the operation of CMOS as a NAND gate and NOR gate with the load. Gives its truth table also. 7+7
- Derive continuity equation for an abrupt p-n junction under forward and reverse bias.
 - 10. Write short notes on any two of the following: 7 × 2
 - (a) Magnetoresistance
 - (b) Heisenberg model of magnetism
 - (c) Gunn Diode
 - (d) Defects and dislocations